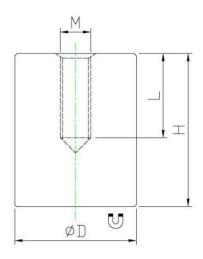


04 Deep Pot Magnet

Different from other pot magnets at the first look, these deep pot magnets are actually designed, produced using the same principle.

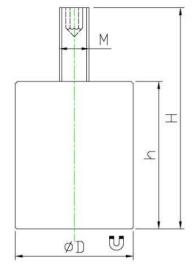

PRODUCT INFORMATION

- 1) Steel or brass housing.
- 2) Custom request on design, strength and coating etc is workable.

NdFeB deep pot magnet with screw hole

11 N	D	Н	MXL		Force		Weight
Item No.	mm	mm	mm	Kg	N	Lbs	g
M-RDNE6F	6	20	M3x5	0.6	6	1.3	4
M-RDNE8F	8	20	M3x5	1.2	12	2.6	7.5
M-RDNE10F	10	20	M4x7	2.4	24	5.3	11
M-RDNE13F	13	20	M4x7	6	60	13	20
M-RDNE16F	16	20	M4x7	9	90	20	30
M-RDNE20F	20	25	M6x9	13	135	30	58
M-RDNE25F	25	35	M6x9	19	190	42	131
M-RDNE32F	32	40	M8x12	34	340	76	243
M-RDNE40F	40	50	M8x12	71	700	157	480
M-RDNE50F	50	60	M10x12	102	1000	225	900
M-RDNE63F	63	65	M12x14	173	1700	382	1560

^{*}H can be shortened or machined without being damaged.

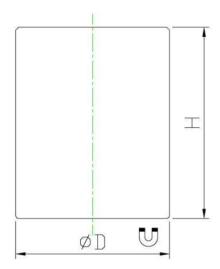


*We test the holding force of magnetic assembly by attaching it on a 20mm thick steel sheet at room temperature and then pulling it slowly in vertical direction with the device that is sensitive enough to record the strength at the moment when magnetic assembly is separated from the steel sheet. This is to give you a reference where the actual holding force in real application could be different with the change of, for example, pulling direction, thickness of the surface etc.


NdFeB deep pot magnet with threaded stud

i. N	D	Н	h	М	Force			Weight
Item No.	mm	mm	mm		Kg	N	Lbs	g
M-RDNE16M	16	30	20	M4	9	90	20	30
M-RDNE20M	20	35	25	M6	13	135	30	58
M-RDNE25M	25	45	35	M6	19	190	42	131
M-RDNE32M	32	52	40	M8	34	340	76	243
M-RDNE40M	40	65	50	M8	71	700	157	490
M-RDNE50M	50	75	60	M10	102	1000	225	915
M-RDNE63M	63	85	65	M12	173	1700	382	1579

^{*}H can be shortened or machined without being damaged.

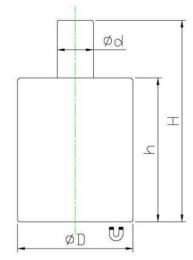


*We test the holding force of magnetic assembly by attaching it on a 20mm thick steel sheet at room temperature and then pulling it slowly in vertical direction with the device that is sensitive enough to record the strength at the moment when magnetic assembly is separated from the steel sheet. This is to give you a reference where the actual holding force in real application could be different with the change of, for example, pulling direction, thickness of the surface etc.

NdFeB deep pot magnet flat

	D	Н		Weight		
Item No.	mm	mm	Kg	N	Lbs	g
M-RDNE10	10	20	2.4	24	5.3	12
M-RDNE16	16	20	9	90	20	31
M-RDNE20	20	25	13	135	30	61
M-RDNE25	25	35	19	190	42	133

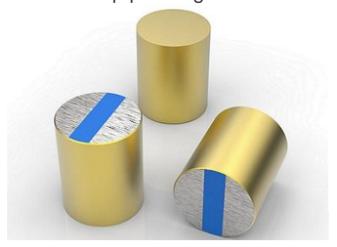
*H can be shortened or machined without being damaged.

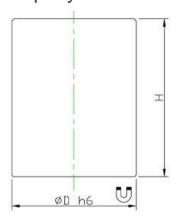


^{*}We test the holding force of magnetic assembly by attaching it on a 20mm thick steel sheet at room temperature and then pulling it slowly in vertical direction with the device that is sensitive enough to record the strength at the moment when magnetic assembly is separated from the steel sheet. This is to give you a reference where the actual holding force in real application could be different with the change of, for example, pulling direction, thickness of the surface etc.

NdFeB deep pot magnet with threaded neck

ii N	D	d	Н	h	Force			Weight
Item No.	mm	mm	mm	mm	Kg	N	Lbs	g
M-RDNE10P	10	4	28	20	2.4	24	5.3	13
M-RDNE16P	16	5	28	20	9	90	20	31
M-RDNE20P	20	6	33	25	13	135	30	61
M-RDNE25P	25	8	45	35	19	190	42	133


^{*}H can be shortened or machined without being damaged.



*We test the holding force of magnetic assembly by attaching it on a 20mm thick steel sheet at room temperature and then pulling it slowly in vertical direction with the device that is sensitive enough to record the strength at the moment when magnetic assembly is separated from the steel sheet. This is to give you a reference where the actual holding force in real application could be different with the change of, for example, pulling direction, thickness of the surface etc.

NdFeB deep pot magnet with brass body, blue epoxy

Dan Na	D	Н	Force			Weight
Item No.	mm	mm	Kg	N	Lbs	g
M-RDNW6	6	20	1	10	2.2	4.5
M-RDNW8	8	20	2.5	25	5.6	8
M-RDNW10	10	20	4.5	45	10	12
M-RDNW13	13	20	7	70	15	20
M-RDNW16	16	20	15	150	33	30
M-RDNW20	20	25	28	280	63	59
M-RDNW25	25	35	46	450	101	132
M-RDNW32	32	40	71	700	157	246

^{*}We test the holding force of magnetic assembly by attaching it on a 20mm thick steel sheet at room temperature and then pulling it slowly in vertical direction with the device that is sensitive enough to record the strength at the moment when magnetic assembly is separated from the steel sheet. This is to give you a reference where the actual holding force in real application could be different with the change of, for example, pulling direction, thickness of the surface etc.